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Homogeneous nucleation of a noncritical phase near a continuous phase transition
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Homogeneous nucleation of a new phase near a second, continuous, transition, is considered. The continu-
ous transition is in the metastable region associated with the first-order phase transition, one of whose coex-
isting phases is nucleating. Mean-field calculations show that as the continuous transition is approached, the
size of the nucleus varies as the response function of the order parameter of the continuous transition. This
response function diverges at the continuous transition, as does the temperature derivative of the free-energy
barrier to nucleation. This rapid drop of the barrier as the continuous transition is approached means that the
continuous transition acts to reduce the barrier to nucleation at the first-order transition. This may be useful in
the crystallization of globular proteins.
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I. INTRODUCTION

When a phase transition is first order the formation o
new phase is an activated process@1#. A nucleus of the new
phase must form, and overcome a free-energy barrier be
it can grow into a new phase. The rate at which nuclei ov
come a barrier of heightDF* scales as exp(2DF* /kT), and
therefore this rate is very sensitive to the barrier height@2#.
For definiteness consider a first-order phase transition
temperatureTa in which the low-temperature phase is th
ordered phase, and the high-temperature phase is the d
dered phase. If we cool the disordered phase belowTa , but
the barrier to nucleation of the ordered phase is very h
then the rate at which nuclei of the ordered-phase form
be effectively zero and the ordered phase will not form ev
though its free energy is lower than that of the disorde
phase. The disordered phase will persist; it is said to
metastable. Here we calculateDF* for nucleation near a
second, continuous, transition, which we call transitionb.
Continuous transitions are critical points and so exhibit u
versal and beautiful behavior; the thermodynamic and co
lation functions contain power-law terms with exponents t
depend only on dimensionality and the symmetry of the
der parameter@3,4#. A priori, we might expect thatDF*
might also contain a power-law term with an exponent t
depends only on dimensionality and the symmetry of
order parameter. This would allow us to make predictio
about howDF* varied near a critical point, which would
apply to a whole class of systems. Below, we present
results of calculations within mean-field theory, for an Isin
like continuous transition in three dimensions. We determ
the singular power law part of the free-energy barrierDF* ;
just aboveTb , it varies asj21, wherej is the correlation
length associated with the order parameter of transitionb.
This singular part means that the derivative ofDF* with
respect to temperature diverges as the critical point is
proached; the barrier to nucleation drops rapidly just ab
the transition. This agrees with the pioneering simulations
ten Wolde and Frenkel@5# who found an anomalously low
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DF* near the critical point of a metastable fluid-fluid trans
tion.

As far as the author is aware, nucleation near a criti
point has only been considered for a fluid-fluid critical po
within a strongly first-order fluid-crystal transition. The wor
was inspired by the observation that globular proteins of
crystallize at temperatures close to where we might expe
metastable fluid-fluid critical point@6,7#, and that the phase
diagrams of some globular proteins do possess a metas
fluid-fluid transition@8,9#. But as the effect we will examine
is due to the decreasing free energy cost of fluctuations n
a critical point, it is universal, i.e., applies to any other sy
tem in the same universality class, that of the thre
dimensional Ising model. Indeed, it is easy to show tha
also applies to systems in the universality classes of the I
model in other dimensionalities@10#. See Refs.@11–15# and
references therein for recent work.

The next section briefly sets out the standard Land
theory for a continuous transition with a scalar order para
eter. Section III then calculates the free energy of a nucl
within a simple mean-field theory of the square-gradie
type. Derivatives with respect to temperature and exter
field are also found. The final section is a conclusion.~See
Refs.@3,4# for an introduction to systems near critical poin
and Ref.@2# for an introduction to homogeneous nucleation!

II. BULK BEHAVIOR

We have a system, which at equilibrium has one ph
transition; a strongly first-order transition, transitiona,
which is at a temperatureTa . For definiteness we let the
high-temperature phase be the disordered phase and the
temperature phase be the ordered phase. If we consid
very pure sample@1# then we can supercool down to tem
peratures belowTa to obtain metastable states@2#, i.e., the
disordered phase is stable for long~with respect to the relax-
ation time of the system! periods of time over some tempera
ture range just belowTa . It is stable because the formatio
of the ordered phase is an activated process, the ord
phase must nucleate, overcoming some free-energy ba
DF* , which will be a strong function of temperature and th
diverges asT→Ta

2 . Here, we are interested in howDF*
©2001 The American Physical Society05-1
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behaves, if as we cool down in the metastable disorde
phase, we approach a continuous transition, transitionb, at
some temperatureTb,Ta .

We will assume that the nucleation barrier to transitiona
is so large that it is possible to start from some tempera
T.Ta and slowly cool down pastTa , either to and below
Tb , or at least to a temperature only a little aboveTb , with-
out transitiona occurring. If it is possible to cool slowly
down toTb , then transitionb is said to be metastable@2#; it
is observable. If it is not possible to cool slowly down toTb
without transitiona occurring, then clearly transitionb is
not observable; it is unstable not metastable with respec
transitiona @2#. We will be studying nucleation of the low
temperature phase of transitiona asTb is approached from
above and so we will not only be determining the effect
transition b on a but also looking at whether or notb is
observable. Roughly speaking, if the proximity of a tran
tion b acts to strongly enhance the nucleation rate of tra
tion a, then this nucleation rate may become large thus r
dering transitionb unobservable. We should also mentio
that we are using temperature as our variable simply for d
niteness, we could replace it by another field variable, e
pressure, without changing our conclusions.

So, starting from high temperature and cooling down
low Ta , we can approachTb . The order parameter of tran
sition b is denoted bym and it may or may not be related t
that of transitiona. The external field that couples tom is h.
The theory here will be mean field in nature but rather g
eral. We only have to assume that the nucleus of the ord
phase of transitiona has a core that has properties close
that of the bulk ordered phase~c.f., the assumptions tha
underlie classical nucleation theory@2#! and that this core
couples to the order parameter of transitionb. By coupling
to m we mean that if there is a nucleus at the origin, then
local value ofm, mr(r )Þm, wherer is the distance from the
center of the nucleus. Both assumptions are very reason
for a strongly first-order phase transition it is difficult
imagine a situation where the nucleus does not have a
with near bulk properties, and the core of the nucleus m
perturb its surroundings and so, in the absence of spe
symmetries, will locally perturb the order parameter of tra
sition b. Figure 1 is a schematic of the nucleus.

NearTb we use a Landau theory for the transitionb. The
Landau theory of a continuous transition is simple, it is
textbook problem, see for example Chaikin and Lubensk
@4# or Kadanoff’s@3#. The bulk free energy per unit volum
f (m) as a function of the order parameterm is

f ~m!5
1

2
a~T2Tb!m21m42hm. ~1!

The transition is atTb at h50. We will only examine be-
havior at h50 but we retainh in order to look at the re-
sponse of the system to an external field that couples tom.
Below, when we study the nucleus near transitionb, we will
find that the outermost part of the density profile of t
nucleus is controlled by the response function ofm, x, de-
fined by
06610
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x215S ]h

]mD5S ]2f

]m2D , ~2!

which is, using Eq.~1!,

x215a~T2Tb! T.Tb . ~3!

III. THE NUCLEUS

We split the nucleus into two parts: the core and t
fringe. The core is that part of the nucleus less thanr c from
its center and the fringe is that part farther away thanr c . The
fringe of the nucleus is assumed to be spherically symme
The core of the nucleus contains at its center a volume th
close to the bulk ordered phase of transitiona. The fringe is
essentially the region that surrounds this core and is p
turbed by the core. Its radius is therefore the correlat
lengthj of m and so diverges asTb is approached. As we ar
concentrating on universal aspects of the nucleus and
DF* , we will replace the core by a boundary condition o
mr in the fringe. We setmr(r 5r c)5mc , which is taken to
be independent of temperature and ofh. Also, mr(r→`)
5m, which is just the obvious boundary condition thatm
must tend towards its bulk value far from the nucleus. N
that as we are above the transition and are working at z
field, m50 but we will retain an explicitm dependence in
order to be able to take derivatives ofDF* . In the fringe and
nearTb , we need only consider the order parameter for tr
sition b and the variations inmr will not be large. Therefore,
we employ a standard Landau-Ginsburg or square-grad
functional for the excess free energyDF of an inhomogene-
ity in an otherwise homogeneous phase@2,16–18#

DF5DFc1E
r>r c

@D f ~mr !1k~“mr !
2#dr , ~4!

where

FIG. 1. Schematic of a nucleus of the ordered phase of trans
a near transitionb. The core of the ordered phase of transitiona is
solid black, and the perturbation this causes in the surrounding
the shaded circle of radius the correlation lengthj. The sphere with
radiusr c , which divides the nucleus into a core and surroundin
is denoted by a dashed circle.
5-2
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D f ~mr !5 f ~mr !2 f ~m! ~5!

is the bulk free-energy change per unit volume to go fromm
to mr . The excess free energyDF is the free energy with a
nucleus minus that without a nucleus;DFc is the contribu-
tion of the core. The second term within the brackets of
~4! is a gradient term; the free energy cost due to variati
in space ofmr . It is proportional to the gradient square
which is the lowest order term in a gradient expansion and
is only adequate whenm is slowly varying. The coefficient
k, of this term is taken to be a constant. The total exces
m due to a nucleus is equal to the integrated value ofmr
2m. DefiningDm(r )5mr(r )2m, then the integral over al
space of this function gives the total excess of the or
parameter due to the nucleus

Dm5E Dm~r ! dr . ~6!

The free-energy barrierDF* is the value ofDF for the
nucleus when it is at its maximum, at the top of the barr
The nucleus at the top of the barrier is called the criti
nucleus@19#. For the critical nucleus we may set the fun
tional derivative ofDF with respect to the profilemr(r ) to
zero

S ]D f ~mr !

]mr
D22k“2mr50 r .r c . ~7!

Once we have solved Eq.~7! we can insert the solution into
Eq. ~4! to obtain the excess free energy of the critical nucle
DF* .

The fringe is the outermost part of the nucleus, wheremr
is near the bulk valuem. So we can use a Taylor expansio
aboutmr5m for D f

D f ~mr !5
1

2
x21~Dm!21•••, ~8!

S ]D f ~mr !

]m D5x21Dm1•••, ~9!

because bothD f and its first derivative are zero formr5m,
and the second derivative isx21 @Eq. ~2!#. Substituting Eq.
~9! into Eq. ~7! we have

x21Dm~r !22k“2Dm~r !50, ~10!

which has a solution of the Ornstein-Zernike form

Dm~r !5~mc2m!S r c

r Dexp@~r c2r !/j#, ~11!

with j the correlation length form, given by

j5~2kx!1/2, ~12!

j5~2k/a!1/2~T2Tb!21/2 T.Tb , ~13!
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where Eq.~12! definesj and we used Eq.~3! to obtain an
expression forj nearTb , Eq. ~13!. To obtain Eq.~11! the
boundary conditionsmr(r→`)5m and m(r c)5mc were
employed. It is not necessary to specifyr c or mc beyond
saying that they should be such thatmc2m is small and so
Dm(r ) will, as required for Eq.~10!, be small forr>r c .
From Eq.~11! we see that the width of the fringe is, as w
expected, of the order of the correlation lengthj for m.

Having obtained the density profile, Eq.~11!, we can sub-
stitute this into Eq.~4!, using Eq.~8! for D f , and obtain an
expression for the free-energy barrier to nucleation. We h

DF* 5DFc14pr c
2~mc2m!2E

r c

`

dr

3F1

2
x211kS 1

r
1

1

j D 2Gexp@2~r c2r !/j#

5DFc14pkr c
2~mc2m!2E

r c

`

dr

3F 2

j2
1

2

jr
1

1

r 2Gexp@2~r c2r !/j#

5DFc14pkr c~mc2m!2@11r c /j#, ~14!

where in obtaining the second line from the first we sub
tuted j for x using Eq.~12!. Finally, we can setm50 to
obtain the free-energy barrier to nucleation of the orde
phase of transitiona near transitionb

DF* 5DFc14pkr cmc
2@11r c /j#. ~15!

As we approach transitionb, T→Tb , DF* approaches the
finite limit

DF* ~T5Tb!5DFc14pkr cmc
2 . ~16!

The free energyDF* can be written as

DF* 5DF* ~T5Tb!1AS r c

j D , ~17!

whereA54pkr cmc
2 , a constant. The singular part ofDF*

has the form the ratior c /j raised to the power 1.

A. Derivatives of DF *

We can take the temperature derivative ofDF* . As m
does not vary withT aboveTb , we may use Eq.~15!, and
obtain

]DF*

]T
5

]DFc

]T
14pkr c

2mc
2 ]j21

]T
, ~18!

which nearTb becomes
5-3



-

nt
w
i

e
o

e
rg
-

ha
f

we

e

n
nc

r
in
g
w

r w

e
a

ect

the
es

e

n-
s
was
r
t
ap-

at
ins,

ent
es-
gu-
of

on,
ase

le-

s at
as

the
to
ure.
just

of
nd

pa-
he
stem
t a

ans

RICHARD P. SEAR PHYSICAL REVIEW E 63 066105
]

]T
~DF* 2DFc!5~2ka!1/2pr c

2mc
2~T2Tb!21/2 T.Tb ,

~19!

where we used Eq.~13! for j. Just above the transitionb the
derivative of the barrier diverges to1`; the barrier drops
very rapidly with decreasing temperature just aboveTb .

Sufficiently nearTb the singular part dominates the tem
perature derivative ofDF* , because it diverges as (T
2Tb)21/2. It is of interest to estimate, within the prese
mean-field theory, what ‘‘sufficiently near’’ means; ho
close toTb do you have to be before the singular part dom
nates. A nonsingular contribution to the temperature dep
dence ofDF* comes from the temperature dependence
DFc . If the nucleation barrier is of order a few tens ofkT,
which we expect to be the case when the nucleation rat
both nonnegligible and slow enough to allow a free-ene
barrier to be meaningful@2#, then we expect the core to con
tain of the order of tens of particles or spins. Assuming t
each particle contributes 1k to the temperature derivative o
DFc , we have that the derivative isO(10k). Thus, in order
for this contribution to be dominated by the singular term
require, see Eq.~19!, that (T2Tb)/Tb be much less than
0.01. This assumes that oncer c , mc , andk have been made
dimensionless, that they are all of order unity. Finally, w
note that in our model we have fixed the value ofmr at r
5r c to be a constantmc , independent of temperature. I
reality the value of the order parameter at a fixed dista
from the center will vary with temperature, as willk. Their
variation with temperature will renormalize the temperatu
derivative of the singular term and contribute to the nons
gular part of the temperature derivative of the free ener
We neglect both these effects for simplicity, and because
expect them to be at most of the same order as the erro
introduced when we approximated our free energy by
single quadratic term.

We can also take the derivative ofDF* with respect to
the fieldh conjugate tom. Using Eq.~14!, and taking note of
the definition ofx, Eq. ~2!,

]DF*

]h
5

]DFc

]h
28pkr cmcx@11r c /j#, ~20!

where after taking the derivative we setm50. Note that
]j/]h50. As transitionb is approached, the rate of chang
of DF* with respect to the field conjugate to the order p
rameter diverges as the response functionx. Also, if we
substitute our solution form(r .r c), Eq. ~11!, with m50,
into Eq. ~6!, we obtain the size of the nucleus

Dm* 5Dmc* 18pkr cmcx@11r c /j# ~21!

with

Dmc5E
r<r c

Dm~r ! dr , ~22!

the contribution of the core, and we used Eq.~12! to substi-
tute x for j2. Comparing Eqs.~20! and ~21!, we see that
06610
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]h
~DF* 2DFc!52~Dm* 2Dmc!. ~23!

For the fringe, the derivative of the free energy with resp
to h is equal to minus the excessm. This result is essentially
what is called the nucleation theorem@20–22# in studies of
nucleation in fluids. It states that the larger the nucleus,
largerDm* is, the more rapidly the nucleation barrier vari
with h. In fluidsm is a number density difference andh is the
chemical potential.

Returning to Eq.~21! for Dm* we see that although th
core can only contribute a finite amount toDm* as its vol-
ume is finite, the contribution of the fringe diverges as tra
sition b is approached. The size of the nucleus diverges ax
as the continuous transition is approached. This result
first derived by the author in Ref.@15#. See also the earlie
work of Talanquer and Oxtoby@11# who first suggested tha
the size of the nucleus diverges as a critical point is
proached. In Refs.@11,15# the critical point is that of a fluid-
fluid or vapor-liquidlike transition. Assuming as before th
the core contains of the order of tens of particles or sp
then as the contribution of the fringe toDm* is varying as
(T2Tb)21, then the fringe should dominateDm* for (T
2Tb)/Tb much less than 0.1. This is a less strict requirem
than required for the temperature derivative, so it is nec
sary to get much closer to the critical point to see the sin
lar part in DFc than is required to see the singular part
Dm* .

IV. CONCLUSION

We have considered the effect of a continuous transiti
transitionb, on the homogeneous nucleation of a new ph
at a first-order transition, transitiona. We found that the
temperature derivative of the free-energy barrier to nuc
ation DF* , diverged as (T2Tb)21/2 within our mean-field
theory, and that the size of the critical nucleus, the nucleu
the top of the free-energy barrier to nucleation, diverged
the response functionx;(T2Tb)21. The presence of a
critical point makes the nucleus very large, its diameter is
correlation lengthj, and causes the free-energy barrier
nucleation to decrease rapidly with decreasing temperat
It reduces the barrier and so facilitates nucleation. This is
what was first demonstrated by ten Wolde and Frenkel@5#
for nucleation of a crystalline phase near the critical point
a fluid-fluid transition. It is a rather general phenomenon a
applies to any continuous transition with a scalar order
rameter, i.e., any Ising-like transition. Whether or not t
same effect appears near a continuous transition in a sy
which is anisotropic or in which the order parameter is no
simple scalar, is an interesting open question.
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