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Homogeneous nucleation of a noncritical phase near a continuous phase transition
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Homogeneous nucleation of a new phase near a second, continuous, transition, is considered. The continu-
ous transition is in the metastable region associated with the first-order phase transition, one of whose coex-
isting phases is nucleating. Mean-field calculations show that as the continuous transition is approached, the
size of the nucleus varies as the response function of the order parameter of the continuous transition. This
response function diverges at the continuous transition, as does the temperature derivative of the free-energy
barrier to nucleation. This rapid drop of the barrier as the continuous transition is approached means that the
continuous transition acts to reduce the barrier to nucleation at the first-order transition. This may be useful in
the crystallization of globular proteins.

DOI: 10.1103/PhysReVE.63.066105 PACS nun®er64.60.Qb, 05.70.Jk, 87.14.Ee

[. INTRODUCTION AF* near the critical point of a metastable fluid-fluid transi-
tion.

When a phase transition is first order the formation of a As far as the author is aware, nucleation near a critical
new phase is an activated proc¢$$ A nucleus of the new point has only been considered for a fluid-fluid critical point
phase must form, and overcome a free-energy barrier beforithin a strongly first-order fluid-crystal transition. The work
it can grow into a new phase. The rate at which nuclei overwas inspired by the observation that globular proteins often
come a barrier of heighAF* scales as exp{AF*/kT), and  crystallize at temperatures close to where we might expect a
therefore this rate is very sensitive to the barrier he[@ht  metastable fluid-fluid critical poirft6,7], and that the phase
For definiteness consider a first-order phase transition at diagrams of some globular proteins do possess a metastable
temperatureT , in which the low-temperature phase is the fluid-fluid transition[8,9]. But as the effect we will examine
ordered phase, and the high-temperature phase is the disds-due to the decreasing free energy cost of fluctuations near
dered phase. If we cool the disordered phase bdlgwbut  a critical point, it is universal, i.e., applies to any other sys-
the barrier to nucleation of the ordered phase is very hightem in the same universality class, that of the three-
then the rate at which nuclei of the ordered-phase form willdimensional Ising model. Indeed, it is easy to show that it
be effectively zero and the ordered phase will not form everalso applies to systems in the universality classes of the Ising
though its free energy is lower than that of the disorderednodel in other dimensionalitig40]. See Refs[11-15 and
phase. The disordered phase will persist; it is said to beeferences therein for recent work.
metastable. Here we calculateF* for nucleation near a The next section briefly sets out the standard Landau
second, continuous, transition, which we call transitign theory for a continuous transition with a scalar order param-
Continuous transitions are critical points and so exhibit uni-eter. Section Ill then calculates the free energy of a nucleus
versal and beautiful behavior; the thermodynamic and correwithin a simple mean-field theory of the square-gradient
lation functions contain power-law terms with exponents thatype. Derivatives with respect to temperature and external
depend only on dimensionality and the symmetry of the orfield are also found. The final section is a conclusiBee
der parametef3,4]. A priori, we might expect thatF* Refs.[3,4] for an introduction to systems near critical points
might also contain a power-law term with an exponent tha@nd Ref[2] for an introduction to homogeneous nucleatjon.
depends only on dimensionality and the symmetry of the
order parameter. T_his would aIIo_v_v us to make. predictions Il. BULK BEHAVIOR
about howAF* varied near a critical point, which would
apply to a whole class of systems. Below, we present the We have a system, which at equilibrium has one phase
results of calculations within mean-field theory, for an Ising-transition; a strongly first-order transition, transitiams,
like continuous transition in three dimensions. We determinevhich is at a temperaturg,. For definiteness we let the
the singular power law part of the free-energy barféi*; high-temperature phase be the disordered phase and the low-
just aboveTy, it varies as¢ 1, where¢ is the correlation temperature phase be the ordered phase. If we consider a
length associated with the order parameter of transifon very pure sampl¢l] then we can supercool down to tem-
This singular part means that the derivative 0F* with peratures belowl , to obtain metastable statg2], i.e., the
respect to temperature diverges as the critical point is apdisordered phase is stable for lowith respect to the relax-
proached; the barrier to nucleation drops rapidly just abovétion time of the systejrperiods of time over some tempera-
the transition. This agrees with the pioneering simulations ofure range just below , . It is stable because the formation
ten Wolde and Frenkdls] who found an anomalously low of the ordered phase is an activated process, the ordered

phase must nucleate, overcoming some free-energy barrier
AF*, which will be a strong function of temperature and that
*Email address: r.sear@surrey.ac.uk diverges asT—T,_ . Here, we are interested in howF*
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behaves, if as we cool down in the metastable disordered

phase, we approach a continuous transition, transjgioat

some temperaturés<T,. @
We will assume that the nucleation barrier to transition

is so large that it is possible to start from some temperature

T>T, and slowly cool down past,, either to and below

Tz, or at least to a temperature only a little abdyg, with-

out transitiona occurring. If it is possible to cool slowly

down toT, then transitions is said to be metastable]; it

is observable. If it is not possible to cool slowly downTig

without transitiona occurring, then clearly transitiop is

not observable; it is unstable not metastable with respect to -

transition« [2]. We will be studying nucleation of the low- 2r;

temperature phase of transitianas T is approached from

above and so we will not only be determining the effect Ofa near transitiorB. The core of the ordered phase of transitiors

transition 8 on & but also looking at whether or ngg is . solid black, and the perturbation this causes in the surroundings is

observable. Roughly speaking, if the proximity of a transI-.the shaded circle of radius the correlation lengtiThe sphere with

t!on pactsto ‘_strongly e_nhance the nucleation rate of tranSIFadiusrc, which divides the nucleus into a core and surroundings,
tion «, then this nucleation rate may become large thus reng yenoted by a dashed circle.

dering transitionB unobservable. We should also mention

that we are using temperature as our variable simply for defi-

niteness, we could replace it by another field variable, e.g., 12(&) _

pressure, without changing our conclusions. X am
So, starting from high temperature and cooling down be-

low T, , we can approacfi;. The order parameter of tran- \hich is, using Eq(1),

sition B is denoted bym and it may or may not be related to

that of transitiona. The external field that couples tois h. x l=a(T-Ty T>T,. 3

The theory here will be mean field in nature but rather gen-

eral. We only have to assume that the nucleus of the ordered

phase of transitionr has a core that has properties close to . THE NUCLEUS

that of the bulk ordered phade.f., the assumptions that We split the nucleus into two parts: the core and the

underlie classical nucleation theof2]) anq that this core fringe. The core is that part of the nucleus less thafrom
couples to the order parameter of transitfenBy coupling o center and the fringe is that part farther away thanThe
to mwe mean that if there is a nucleus at the origin, then thgj,ge of the nucleus is assumed to be spherically symmetric.
local value ofm, m,(r) #m, wherer is the distance from the r5"cqre of the nucleus contains at its center a volume that is
center of the nucleus. Both assumptions are very reasonablgca to the bulk ordered phase of transitienThe fringe is
for a strongly first-order phase transition it is difficult t0 ggsenially the region that surrounds this core and is per-
imagine a situation where the nucleus does not have a Colghaq hy the core. Its radius is therefore the correlation
with near bulk properties, and the_core of the nucleus m“_sl%\ngthg of mand so diverges a8 is approached. As we are
perturb its surroundings and so, in the absence of Specialycentrating on universal aspects of the nucleus and of
sy_mmetngs, will chally perturb.the order parameter of tran—AF*, we will replace the core by a boundary condition on
sition B. Figure 1 is a schematic of the nucleus._ _ m, in the fringe. We setn,(r=r.)=m,, which is taken to
NearT; we use a Landau theory for the transitisnThe be independent of temperature and tofAlso, m, (r— )
Landau theory of a continuous transitiqn_ is simple, it is a_ . which is just the obvious boundary co,ndirtion that
textbook proble,m, see for example Chaikin and I.‘UbenSkySmust tend towards its bulk value far from the nucleus. Note
[4] or Kadanoff_s[3]. The bulk free energy per unit volume that as we are above the transition and are working at zero
f(m) as a function of the order parameteris field, m=0 but we will retain an explicim dependence in
order to be able to take derivatives®F* . In the fringe and
nearT s, we need only consider the order parameter for tran-
sition 8 and the variations im, will not be large. Therefore,
we employ a standard Landau-Ginsburg or square-gradient
functional for the excess free energy of an inhomogene-
ity in an otherwise homogeneous ph&¢16—-1§

FIG. 1. Schematic of a nucleus of the ordered phase of transition

9*f
: (2

am?

f(m)=£a(T—T ym?>+m*—hm (1)
2 B '

The transition is aff ; at h=0. We will only examine be-
havior ath=0 but we retainh in order to look at the re-
sponse of the system to an external field that couplas.to
Below, when we study the nucleus near transiirwe will AF=AF .+ f [Af(m,)+ &(Vm,)2]dr, (4)
find that the outermost part of the density profile of the r=rg

nucleus is controlled by the response functiompfy, de-

fined by where
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Af(my)=f(m;)—f(m) 5

is the bulk free-energy change per unit volume to go fram
to m,. The excess free energyf is the free energy with a
nucleus minus that without a nucleusF is the contribu-
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where EQ.(12) defines¢ and we used Eq(3) to obtain an
expression fog nearT;, Eq. (13). To obtain Eq.(11) the
boundary conditionam,(r—«)=m and m(r.)=m, were
employed. It is not necessary to specify or m; beyond
saying that they should be such thmt—m is small and so

tion of the core. The second term within the brackets of EQAM(r) will, as required for Eq.(10), be small forr=r..

(4) is a gradient term; the free energy cost due to variationgrom Eq.(11) we see that the width of the fringe is, as we
in space ofm,. It is proportional to the gradient squared, expected, of the order of the correlation lengtfor m.

which is the lowest order term in a gradient expansion and so Having obtained the density profile, Ed.1), we can sub-

is only adequate whem is slowly varying. The coefficient stitute this into Eq(4), using Eq.(8) for Af, and obtain an

«, of this term is taken to be a constant. The total excess aéxpression for the free-energy barrier to nucleation. We have
m due to a nucleus is equal to the integrated valuenpf
—m. Defining Am(r)=m,(r) —m, then the integral over all o
space of this function gives the total excess of the order AF*:AFC+4Wrg(mc—m)2f dr
parameter due to the nucleus fe

1 2

X EX_1+K + =

3

Am:J Am(r)dr. (6) T expg 2(ro—r)/£]
=AF0+47TKI’(2:(mC—m)2fxdr

e

The free-energy barriehF* is the value ofAF for the
nucleus when it is at its maximum, at the top of the barrier.
The nucleus at the top of the barrier is called the critical
nucleus[19]. For the critical nucleus we may set the func-
tional derivative ofAF with respect to the profilen,(r) to
zero

X

1
?+ g_r+ = exgd 2(re—r)/€]

=AF +4mr (m.—m)?[1+r /€], (14
AAT(m,)

am,

)—ZKVZmr=O r>r,. 7)

where in obtaining the second line from the first we substi-
tuted ¢ for y using Eq.(12). Finally, we can setm=0 to
obtain the free-energy barrier to nucleation of the ordered

Once we have solved E@7) we can insert the solution into " -
é)hase of transitiorx near transitior3

Eq. (4) to obtain the excess free energy of the critical nucleu
AF*.

The fringe is the outermost part of the nucleus, whare
is near the bulk valuen. So we can use a Taylor expansion
aboutm,=m for Af

AF*=AF +4mrrmi1+r./&]. (15)

As we approach transitiog, T—Tg, AF* approaches the

finite limit
Af(m)=3X*1(Am)2+-~- 8
V2 ’ AF*(T=Tp) =AF+4mkr,m?. (16)
(aA;r(nmf)) =y lAm+- .-, (9) The free energAF* can be written as
because botAf and its first derivative are zero fon,=m, AF*=AF*(T=Tp) +A r_c) (17)
and the second derivative js ! [Eq. (2)]. Substituting Eq. &

(9) into Eq. (7) we have
whereA:4m<rcm§, a constant. The singular part afF*

x *Am(r)—2«V?Am(r)=0, (100 has the form the ratio./¢ raised to the power 1.

which has a solution of the Ornstein-Zernike form A Derivatives of AF*
Me We can take the temperature derivative ofF*. As m
Am(r)=(mg—m) T exd (rc—r)/él, (1) does not vary withl aboveT,, we may use Eq(15), and

obtain
with ¢ the correlation length fom, given by IAF*  OAF, , , 25571 o
§:(2KX)1/2! (12) JT B JT * ’n-KrCmc oT ’ ( )
E=2xl)YAT-Tp) Y2 T>Tg, (13)  which nearT; becomes
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J * _ 1222 —-1/2 d * — *
S (AF* —AFo)=(2xa) Par Zmi(T—Ty) T>T,, SH(AF* —AFg)=—(Am* —Am,). (23
(19

where we used Edq13) for . Just above the transitigeithe  For the fringe, the derivative of the free energy with respect
derivative of the barrier diverges te«; the barrier drops to his equal to minus the excess This result is essentially
very rapidly with decreasing temperature just abdye what is called the nucleation theordi®0—22 in studies of
Sufficiently nearT 4 the singular part dominates the tem- nucleation in fluids. It states that the larger the nucleus, the
perature derivative ofAF*, because it diverges asT( largerAm* is, the more rapidly the nucleation barrier varies
—Tz) Y2 It is of interest to estimate, within the present with h. In fluidsmis a number density difference ahds the
mean-field theory, what “sufficiently near’ means; how chemical potential.
close toT ; do you have to be before the singular part domi-  Returning to Eq(21) for Am* we see that although the
nates. A nonsingular contribution to the temperature depercore can only contribute a finite amountAon* as its vol-
dence ofAF* comes from the temperature dependence otime is finite, the contribution of the fringe diverges as tran-
AF.. If the nucleation barrier is of order a few tenslof,  sition 8 is approached. The size of the nucleus divergeg as
which we expect to be the case when the nucleation rate i8S the continuous transition is approached. This result was
both nonnegligible and slow enough to allow a free-energyirst derived by the author in Ref15]. See also the earlier
barrier to be meaningfyR], then we expect the core to con- work of Talanquer and Oxtobjl 1] who first suggested that
tain of the order of tens of particles or spins. Assuming thathe size of the nucleus diverges as a critical point is ap-
each particle contributesklto the temperature derivative of proached. In Refd11,15 the critical point is that of a fluid-
AF., we have that the derivative 8(10k). Thus, in order fluid or vapor-liquidlike transition. Assuming as before that
for this contribution to be dominated by the singular term wethe core contains of the order of tens of particles or spins,
require, see Eq(19), that (T—T,)/T; be much less than then as the contribution of the fringe tom* is varying as
0.01. This assumes that oncg m,, andx have been made (T—Tg) *, then the fringe should dominatem* for (T
dimensionless, that they are all of order unity. Finally, we—Tg)/Tg much less than 0.1. This is a less strict requirement
note that in our model we have fixed the valuenof at r than required for the temperature derivative, so it is neces-
=r. to be a constanin,, independent of temperature. In sary to get much closer to the critical point to see the singu-
reality the value of the order parameter at a fixed distancéar part in AF than is required to see the singular part of
from the center will vary with temperature, as will Their ~ Am*.
variation with temperature will renormalize the temperature
derivative of the singular term and contribute to the nonsin-
gular part of the temperature derivative of the free energy. IV. CONCLUSION
We neglect both these effects for simplicity, and because we \yq haye considered the effect of a continuous transition,

.eﬁped“ thgm tr? be at most of lthetszme or?er as the errgr WFansition3, on the homogeneous nucleation of a new phase
Introduced when we approximateéd our ree energy by &y 5 first-order transition, transition. We found that the

single quadratic term. o . temperature derivative of the free-energy barrier to nucle-
We can also take the derivative afF* with respect to ation AF*, diverged as-(-_TB)—l/Z within our mean-field

tEe ge;dh g:onjufgatt'ez tcmé Using Eq.(14), and taking note of theory, and that the size of the critical nucleus, the nucleus at
the definition ofy, Eq.(2), the top of the free-energy barrier to nucleation, diverged as

* the response functiony~(T—T,) 1. The presence of a
JAF*  9AF, e . B v, .
=—— —8mkrmex[1+r./£], (20 critical point makes the nucleus very large, its diameter is the
h dh correlation lengthé, and causes the free-energy barrier to

nucleation to decrease rapidly with decreasing temperature.
It reduces the barrier and so facilitates nucleation. This is just
what was first demonstrated by ten Wolde and Freh&gl

for nucleation of a crystalline phase near the critical point of
a fluid-fluid transition. It is a rather general phenomenon and
applies to any continuous transition with a scalar order pa-
rameter, i.e., any Ising-like transition. Whether or not the
same effect appears near a continuous transition in a system

where after taking the derivative we set=0. Note that
0é/oh=0. As transitiong is approached, the rate of change
of AF* with respect to the field conjugate to the order pa-
rameter diverges as the response functionAlso, if we
substitute our solution fom(r>r.), Eq. (11), with m=0,
into Eq. (6), we obtain the size of the nucleus

* *
Am*=Amg + 8l cMex[ 1+ /€] @D which is anisotropic or in which the order parameter is not a
with simple scalar, is an interesting open question.
Am,= f Am(r) dr, (22) ACKNOWLEDGMENTS
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